鄭州初中中考幾何證明
鄭州初中中考幾何證明
想要在證明題上找到思路,就一定要擁有轉化的思想,學會將要證明的結論進行倒推。即我要如何一步步最后證明這個結論,幾何證明題的常見思路。最開始接觸幾何證明題的時候我也常常沒有思路,但是我會耐著性子把老師講過的例題和評講過的錯題進行總結。久而久之,我就摸清楚了不同的幾何證明題應該如何去思考。
證明兩線段相等:
1.兩全等三角形中對應邊相等。
2.同一三角形中等角對等邊。
3.等腰三角形頂角的平分線或底邊的高平分底邊。
4.平行四邊形的對邊或對角線被交點分成的兩段相等。
5.直角三角形斜邊的中點到三頂點距離相等。
6.線段垂直平分線上任意一點到線段兩段距離相等。
7.角平分線上任一點到角的兩邊距離相等。
8.過三角形一邊的中點且平行于第三邊的直線分第二邊所成的線段相等。
9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。
10.圓外一點引圓的兩條切線的切線長相等或圓內垂直于直徑的弦被直徑分成的兩段相等。
11.兩前項(或兩后項)相等的比例式中的兩后項(或兩前項)相等。
12.兩圓的內(外)公切線的長相等。
13.等于同一線段的兩條線段相等。
證明兩角相等:
1.兩全等三角形的對應角相等。
2.同一三角形中等邊對等角。
3.等腰三角形中,底邊上的中線(或高)平分頂角。
4.兩條平行線的同位角、內錯角或平行四邊形的對角相等。
5.同角(或等角)的余角(或補角)相等。
6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等于它所夾的弧對的圓周角。
7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。
8.相似三角形的對應角相等。
9.圓的內接四邊形的外角等于內對角。
10.等于同一角的兩個角相等。
<< 上一篇:鄭州初中中考考點歸納 | >> 下一篇:鄭州初中中考幾號考? |
-
無相關信息